快速幂

1
2
3
4
5
6
7
8
int pow(int a, int b, int m) {
int ans = 1;
for (; b; b >>= 1) {
if (b & 1) ans = (LL)ans * a % m;
a = (LL)a * a % m;
}
return ans;
}

龟速乘

1
2
3
4
5
6
7
8
9
10
LL mul(LL a, LL b, LL p) {
a %= p;
b %= p;
LL c = (double)a * b / p;
LL x = a * b;
LL y = c * p;
LL ans = (LL)(x % p) - (LL)(y % p);
if (ans < 0) ans += p;
return ans;
}

等比数列(公比为p,项数为e,以1为首项)

1
2
3
4
5
6
7
8
9
int sum(int p, int e, int m) {
if (e == 1) return 1;
if (e % 2 == 0) {
return (LL)(1 + pow(p, e / 2, m)) * sum(p, e / 2, m) % m;
} else {
return ((LL)(1 + pow(p, e / 2, m)) * sum(p, e / 2, m) % m +
pow(p, e - 1, m)) % m;
}
}

分解质因数

1
2
3
4
5
6
7
8
9
10
11
12
int s = 0;
for (int i = 2; i <= a / i; i++) {
if (a % i != 0) continue;
p[s] = i; c[s] = 0;
while (a % i == 0) {
a /= i; c[s]++;
}
s++;
}
if (a > 1) {
p[s] = a; c[s++]++;
}

相关题目:

97. 约数之和 - AcWing题库
1995 — Raising Modulo Numbers (poj.org)

参考文章:

ACM——常见的几种分解质因子的方法 - 知乎 (zhihu.com)